

Everglades Protection Area Tributary Basins

Long-Term Plan for Achieving Water Quality Goals

Quarterly Long-Term Plan Communications Meeting

November 30, 2005

General Update on Long-Term Plan Implementation

Tracey Piccone

NSID Basin

- Evaluation of Alternatives for Elimination of Stormwater Discharge from NSID to the EPA
 - Contract with A.D.A. Engineering, Inc.
- Final Task 3 Tech Memo Final Alternative Schematic Design posted at: http://www.sfwmd.gov/org/erd/longtermplan/d ocuments.shtml
- Task 4 Cost Estimates for Alternatives posted at: http://www.sfwmd.gov/org/erd/longtermplan/d ocuments.shtml

- C-11 W Basin
 - Analysis of Enhancements to Western C-11 Impoundment
 - Contract with Burns & McDonnell
 - Kick-off meeting was held on June 8, 2005
 - Completion of study currently scheduled for approx. March 2006

- NNRC Basin
 - Flood Impact Analysis for the North New River Canal Basin
 - Contract with Earth Tech, Inc.
 - Task 2: Hydraulic Analysis
 - Found not using G-123 would impact flood protection in NNRC basin
 - Recommends further studies to optimize flood protection in the basin
 - Posted at: http://www.sfwmd.gov/org/erd/longtermplan/documents.shtm
 - Task 3: Evaluate alternatives to offset impact of not using G-123 for flood protection
 - Posted at: http://www.sfwmd.gov/org/erd/longtermplan/documents.shtml

- Update & Maintenance of Hydraulic Models
 - 2d models complete: STA-1W, STA-2, STA-6, STA-5, STA-3/4
 - Reports Posted at:
 http://www.sfwmd.gov/org/erd/longtermplan/docume
 http://www.sfwmd.gov/org/erd/longtermplan/docume
 http://www.sfwmd.gov/org/erd/longtermplan/docume
 - > STA-1E model and report under development
 - >Scheduled to be completed by Dec. 30, 2005

- 2006 South Florida Environmental Report SFER
 - Summary of FY 2005 Long-Term Plan project activities
 - Chapter 8 and other chapters
 - Summary of WY 2005 STA performance
 - Chapter 4
 - Draft Available at
 - http://www.sfwmd.gov/sfer/
 - Peer Review & Public Workshop was held:
 - September 27, 28, 29, 2005 at District HQ, B-1 Auditorium
 - Final Report available early 2006

LTP Update

Long-Term Plan Projects in Acceler8

LTP Projects in Acceler8

- EAA STAs on Compartments B and C
 - STA-2 Cell 4
 - Build-out of STAs on remainder of Compartment B
 - STA-5 Flow-way 3
 - STA-6 Enhancements and STA-6 Section 2
 - Build-out of STAs on remainder of Compartment C
- EAA Regional Feasibility Study

Everglades Agricultural Area Map

Everglades Protection Area Tributary Basins Long-Term Plan for Achieving Water Quality Goals

STA-2 Cell 4

- Improve water quality discharging from STA-2
- Increase operational flexibility
- > Flow capable by December 31, 2006
- Submerged Aquatic Vegetation (SAV) dominated treatment cell
- 2,015-acre expansion in Compartment B

STA-2 Cell 4 Site Plan

Everglades Protection Area Tributary Basins Long-Term Plan for Achieving Water Quality Goals

STA-2 Cell 4

Implementation Timeline

Preliminary Site Surve	y & Mapping	Complete
------------------------	-------------	----------

Geotechnical Investigation

- Basis of Design Report
 Complete
- Preliminary Engineering Complete
- Final Plans & Specifications Complete
- Start Demolition & Site Preparation
 Ongoing
- Main Cell 4 Construction Start
 Jan 2006
- Cell 4 Flow Capable
 Dec 2006

STA-5 Flow-way 3

- Improve water quality discharging from STA-5
- Increase operational flexibility
- > Flow capable by December 31, 2006
- Emergent vegetation upstream cell followed by SAV downstream cell
- 2,560-acre expansion in Compartment C

CONTROL STRUCTURE (EXISTING)

DIVERSION STRUCTURE

ED CONTROL STRUCTURE (PROPOSED)

STA-5 Flow-way 3 Site Plan

STA-5 Flow-way 3

Implementation Timeline

Preliminary Surveying/Geotechnical Complete

H&H Modeling
Complete

Basis of Design Report
Complete

Final Plans & Specifications
Complete

➤ Bid Award Jan 2006

Flow-way 3 Flow Capable
Dec 2006

STA-6 Enhancements and STA-6 Section 2

- Improve water quality discharges to Everglades Protection Area
- Expand STA-6 with a new 1,440-acre Section 2
- Flow capable by December 31, 2006

STA-6 Section 2 Site Plan

STA-6 Section 2

Implementation Timeline

Preliminary Site Surveying & Mapping Complete

Geotechnical Investigation
Complete

Basis of Design Report
Complete

Final Plans & Specifications
Complete

Construction Start
Jan 2006

Flow Capable
Dec 2006

EAA Regional Feasibility Study

Purpose

- Optimize distribution of flows and loads to STAs to improve water quality in the EPA incrementally for:
 - existing system
 - And with future Acceler8 projects
- Develop information necessary for planning, design and construction of future projects

Coordination Efforts

- Long-Term Plan Technical Working Group
- Long-Term Plan Quarterly Communications Meetings
- US Department of Interior
- USACE
- Audubon
- FDEP
- EAA Environmental Protection District
- Refuge staff
- Stakeholders
- Consultants
- SFWMD staff

Evaluation Criteria

Technical Factors

- Long-term TP Concentration Achieved
- Flood Impact Analysis
- Operational Flexibility
- Reservoir Operation
- Implementation Schedule (including Real Estate Acquisition)

Evaluation Criteria

Environmental Factors

- Re-distribution of flows and TP loads to the receiving waters
- Maintain desirable levels in the Refuge

Evaluation Criteria

Economic Considerations

- Capital and O&M Cost Estimates
 - Total 50-yr Present Worth
- Cash Flow Analysis

Everglades Protection Area Tributary Basins Long-Term Plan for Achieving Water Quality Goals

Diverts Miami
 Canal (EAA)
 runoff to STA 5, STA-6 &
 Compartment
 C STA

Objective was to use the best features of Alternatives 1, 2, and 3, and to reduce the overall cost without sacrificing performance.

- Enlarge L-7, separate of Canal from LNWR
- Divert S-2/S-6 to Cross Canal and North New River Canal
- Connect Manley Ditch to STA-5 Seepage Canal
- Enlarge Cross and Bolles Canals
- Widening of the North New River Canal

Abandoned as it did not perform better than Alt 1 or Alt 2, and it was more expensive.

This is a variant of Alternative 1 that has Compartment B STA separate from Cell 4 of STA-2

Compartment B additions:

- > 1,600 cfs inflow pump station
- Inflow canals
- Inverted siphons under STA-2 Cell 4
- > 1,600 cfs outflow pump station

Note: An inverted siphon needs high velocities to be self-flushing. High velocity = high head losses. Maintenance is concern for siphons.

Summary of Alternative Analysis

Evaluation Criterion	Quantitative Measure (See Note 1)				
	Alternative 1	Alternative 2	Alternative 3	Alternative 5	
Technical Factors					
Long-Term Phosphorus Concentration Achieved (Flow-weighted mean value)	17.1 ppb (13.3 – 18.9)	16.4 (14.9 – 18.3)	Alt1 or better depending on STA 5 performance	17.1 ppb (13.3 – 18.9)	
Flood Impact Analysis					
 Flooding (>12.5 ft NGVD) 	0.0 miles	4.8 miles	0.0 miles	4.8 miles	
 Canal Peak Stage, Miami 3914 	12.4 ft-NGVD	12.93 ft-NGVD	11.75 ft-NGVD	12.6 ft-NGVD	
3. Operational Flexibility					
Structures/Pump Stations	Two new gates, Two new pump stations	Two new gates, One new pump station	3 new gates, 3 new pump stations	Two new gates, Two new pump stations	
 Operational Modifications 	Two new flow routes	STA 1W to STA 2 via L- 7	3 new flow routes	Two new flow routes	
	2,760 cfs Cross to NNR	3,093 cfs Cross to NNR	2,760 cfs Cross to NNR	2,500 cfs Cross to NNR	
Operational Concerns		5,000 cfs A-1 PS required	Implement if STA 5 TP removal improves	Maintenance of siphons is difficult	
Reservoir Operation Factors					
 Reservoir Avg Annual Inflow Vol. 	416,800 ac-ft/yr	416,800 ac-ft/yr	416,800 ac-ft/yr	416,800 ac-ft/yr	
Reservoir Design Inflow Volume	130,800 ac-ft	168,200 ac-ft	130,800 ac-ft	130,800 ac-ft	
Irrigation Supply, Ac-ft/yr	180,000 ac-ft/yr	180,000 ac-ft/yr	180,000 ac-ft/yr	180,000 ac-ft/yr	
Implementation Schedule including Real Estate (completion year)	2010	2010	2010	2010	
Environmental Factors					
6. Redistribution of flows and loads	1,715,679 ac-ft/yr	1,540,500 ac-ft/yr	1,715,679 ac-ft/yr	1,715,679 ac-ft/yr	
7. Impact to Refuge	See note 2.	See note 2.	See note 2.	See note 2.	
Economic Considerations					
8. Opinion of Probable Planning Level Capital, Real Estate, & O&M Cost (50 yrs present worth)	\$459 million	\$495 million	\$480 million	\$464 million	
9. Cash Flow Analysis (See note 3)	21 million / 3.25 yrs	26 million / 2.5 yrs	21 million / 3.25 yrs	24 million / 2 yrs	

Notes: 1. Alternative 4 is not shown due to initial modeling results.

- Further study required.
- 3. Duration given is the period of primary construction activity.

Everglades Protection Area Tributary Basins Long-Term Plan for Achieving Water Quality Goals

Alternative Capital Costs*

1	2	3	5
\$152.05M	\$180.71M	\$167.19M	\$153.77M

*Costs excluding Compartment B&C STAs, and Annual O&M

Results

- No large differences in predicted STA outflow TP concentrations
- Alt 1 is more robust than Alt 2 for maintaining flood control
- Alt 2 requires a larger pump station for the A-1 Reservoir
- No large differences in costs

Operational Flexibility

- Alt 1 performs well in conveying WPB runoff to NNRC while maintaining flood control
- Alt 2 requires more pump station capacity to achieve inter-basin transfers
- Alt 2 allows for separation of treated EAA runoff from the Refuge
- Alt 3 has Alt 1 benefits and also reduces discharges to Miami Canal

Re-distribution of flows and TP loads to the receiving waters

- Flows to LNWR will decrease for all alternatives
- Alt 2 has the greatest reduction, but will probably reduce net seepage from LNWR
- Hydraulic impact to LNWR is currently being evaluated further by SFWMD using the 2x2 model

Implementation Schedule

ALTERNATIVE	PROJECTED COMPLETION DATE
Alternative 1	2010
Alternative 2	2010
Alternative 3	2010
Alternative 5	2010

Schedule Moving Forward*

*Note: Some dates shown above have been impacted by Hurricane Wilma.

Everglades Protection Area Tributary Basins Long-Term Plan for Achieving Water Quality Goals